Tutorial Note XIII

1 An Application of the Riemann-Lebesgue Lemma: the Dirichlet Inte-
gral

Ih this section, as an application of the Riemann-Lebesgue lemma, we calculate the Dirichlet

integral

/OO sinz dr = lim “sing dz.
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We first note that the Dirichlet kernel:
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satisfies that
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If we replace sin(x/2) by x/2, then
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So it remains to calculate the difference
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Note that
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is continuous on [—7, 7]. So we can apply the Riemann-Lebesgue lemma and we have
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Therefore,

2 Decay of Fourier Coefficients: Continuation

First, we recall the conclusions about decay of Fourier coefficients listed in the last tutorial:
« If f is a-Holder continuous, f(n) = O(1/|n|*);
« If f is bounded monotone, f(n) = O(1/|n|);
« If f is continuous, f(n) = o(1);
« If fis C%, f(n) = o(1/|n|*).

In this section, we present their proofs. First, we note that the fourth conclusion is just a

corollary of the Riemann-Lebesgue lemma since
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So we mainly prove the first two conclusions here. WLOG, we assume that n > 0. To see the

cancellations of e "%, we return to Riemann sums. We have
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For the first conclusion, if we take N = 2nl, then
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An important observation is that
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Inspired by this, since
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So
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provided that | f(x ( )| < K |z — y]a Accordlng to this idea, a neat proof is as follows:
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Moreover, this result is sharp for & € (0, 1). Consider the lacunary Fourier series:
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for a € (0,1). It is obvious that its Fourier coefficients are O(1/|n|*). Next we show that it is

«a-Holder continuous. Since
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Next we prove the second conclusion. For (1), by summation by parts, we have
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3 Bernstein Theorem

In this section, we prove the Bernstein theorem.

Theorem 3.1 (Bernstein)

If [ is a-Hélder continuous, where o > 1/2, then Zn|f(n)| < 0.

Proof. By the above conclusions about decay of Fourier coefficients, we have f(n) = O(1/|n|*),
which is not enough to prove 3°, | f(n)| < co. So we need more delicate estimates. Our tool

is Parseval’s identity. To exploit the regularity of f, we consider f(z + h) — f(x).

[f(@+h) = f(2)]"(n) = (" = 1) f(n).

By Parseval’s identity,
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If h = m/2%,
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for n satisfying 2871 < |n| < 2F. So
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provided that | f(z) — f(y)| < K|z — y|*. By the Cauchy-Schwarz inequality,
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Since v > 1/2, we have
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The contents of this tutorial note are mainly from the exercises of chapter 3 of Stein’s Fourier

analysis.



